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Abstract Visual perception is typically performed in the context of a task or goal.

Nonetheless, visual processing has traditionally been conceptualized in terms of a fixed,

task-independent hierarchy of feature detectors. We explore the computational implica-

tions of allowing early visual processing to be task modulated. Using artificial neural

networks, we show that significant improvements in task accuracy can be obtained by

allowing the weights to be modulated by task. The primary benefits are obtained under

resource-limited processing. A relatively modest task-based modulation of weights and

activities can lead to a large performance boost, suggesting an efficient means of increasing

effective cortical capacity.

Keywords Neural network � Top-down processing � Visual perception �
Control � Computational modeling � Cognitive psychology

1 Introduction

Individuals typically perceive the world around them with a task or goal in mind. Despite

the active nature of perception, the traditional theoretical perspective, exemplified by the

early work of Marr (1982), casts the visual system as a static, passive sensory structure that

constructs a veridical representation of all facets of the environment, regardless of

immediate goals. The neural architecture that embodies this perspective is a rigid hierarchy

of feature detectors, which constructs a representation of the visual scene that can be used

by subsequent decision making and action systems.
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An alternative perspective is beginning to emerge that characterizes visual information

processing as dynamic, flexible, and specialized to current goals. According to this

perspective, these goals modulate the nature of the visual analysis that is performed, the

flow of information within the visual system, and the resulting representations that are

constructed.

These two contrasting perspectives are depicted in Fig. 1. We use the terms bottom up
and top down to refer to the perspectives in which visual processing is task independent or

task dependent, respectively. Bottom up simply implies that processing is guided from the

outside world, and top down implies that processing is guided from higher cortical regions.

The vast majority of cognitive neuroscience models in vision adopt an essentially

bottom-up perspective. Although an exciting recent development has been to consider the

role of top-down processing (e.g., Bar et al. 2006), ‘‘top down’’ refers primarily to

knowledge, expectations, and temporal and spatial context.

In this work, we focus specifically on top-down influence of current goals and the task

being performed, and we use ‘‘top down’’ as a synonym for task or goal dependent. We

investigate the continuum of possible models by varying the strength of top-down mod-

ulation of visual processing based on current goals and tasks. Surely, specializing an

architecture for a task at hand should facilitate processing—i.e., it should yield more

accurate results given a fixed amount of neural hardware, or it should require less neural

hardware to achieve a given level of accuracy. Our exploratory study goes further and

investigates the following issues: the magnitude of the benefit of top-down modulation, the

conditions under which a benefit is obtained, and the types of top-down modulations that

yield benefits. Our research aims to test the viability of the hypothesis that top-down

cortical feedback serves to tune the perceptual system to the task at hand.

1.1 Evidence for top-down modulation of visual processing

In this section, we review evidence from neuroscience, neuroimaging, and psychology

concerning the top-down modulation of visual processing.

Tasks and goals can influence processing in multiple ways. On a slow time scale,

practice on a task leads to learning of new representations. For example, Lee et al. (2002)

recorded neural activity while a monkey performed visual search with shape-from-shading

stimuli. V1 and V2 neurons show pop-out response to targets that increased with
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Fig. 1 Two visual processing architectures: (a) bottom-up architecture in which visual processing is task
independent; (b) top-down architecture in which visual processing is task dependent

46 M.C. Mozer, A. Fan

123



experience and skill. On a somewhat shorter time scale, Zemel et al. (2002) demonstrated

that human participants showed an immediate reorganization of perceptual grouping after

being exposed to a set of novel shapes. These studies can be explained by long-term

perceptual learning, rather than a dynamic change in neural response properties when the

task changes.

A dynamic case, occurring on a time scale of seconds, is the influence of selective

attention in the ventral pathway. Attention to a stimulus attribute—location, orientation,

direction of motion, etc.—raises the gain of neural responses (Kastner and Ungerleider

2000). In V4, 25% of neurons show a statistically reliable difference in response depending

on a target orientation (Maunsell et al. 1991).

Attentional modulation primarily yields greater sensitivity without much change in

selectivity (Maunsell 2004). Some support has been documented for changes in selectivity.

Using binocular rivalry displays, Logothetis and Schall (1989) found neurons in the

superior temporal sulcus that reflected the monkey’s perception, not the retinal stimulation.

Crist et al. (2001) found an influence of contextual stimuli placed outside the classical

receptive field of V1 cells that was consistent with a trained discrimination, but only when

the monkey was performing the task.

Evidence for task-based modulation is also found in humans. PET studies show that the

same retinal input can activate different extrastriate areas, or even the dorsal versus the

ventral stream, depending on whether the task being performed is detection or discrimi-

nation (Fias et al. 2002; Orban et al. 1996). In a behavioral study, Schyns and Oliva (1991)

found that the perceptual features extracted from images of faces depend on their diag-

nosticity for the task at hand: With hybrid stimuli combining images at two different

spatial scales, a primary discrimination task (gender, expression, or identity) determines

which scale is used to make secondary judgments.

The high-density feedback projections found in each layer of the visual hierarchy are

naturally interpreted as providing a top-down signal. Beyond the projections to carry the

signal, top-down modulation requires the ability to influence cell response properties.

Steriade (2004) has argued that slight changes to membrane potential can have dramatic

effects: firing patterns can transform a neuron from one response type (regular spiking, fast

spiking, fast rhythmic bursting, intrinsically bursting) to another.

1.2 Modeling top-down modulation of visual processing

Having summarized the cognitive neuroscience evidence indicating that tasks and goals

influence visual information processing, we now discuss what we mean by ‘‘influence’’ in

terms of computational models. We operate within the artificial neural network (ANN)

paradigm, because ANNs are arguably closer to the underlying neurobiology than are other

machine learning models. We acknowledge that ANNs are still quite an abstraction from

true neural architectures and dynamics, but past research has been successful in using the

ANN paradigm to draw inferences and make predictions concerning the operation of

biological systems (e.g., Zipser and Anderson 1988).

To provide a concrete framework for addressing task-based vision, we focus on a simple

visual search task: determining the presence or absence of a target in a single-item display.

Each different target corresponds to a task. For example, with single-digit displays, one

could define ten tasks, corresponding to: ‘‘Is a 0 present in the display?’’, ‘‘Is a 1 present in

the display?’’, etc.
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Figure 2a depicts a generic neural network to perform a specific task, i.e., answer a

specific visual search question. The input is a representation of the visual field, and

the output is a binary present/absent decision. The hidden layer allows for a flexible

re-representation of the input useful for performing the task. This simple model is not

meant to have any isomorphism to the visual system, but is only meant as a functional

architecture that performs the same I/O mapping as the visual system (more on this topic in

the Discussion section).

Figure 2b embeds the network of Fig. 2 a into a pure bottom-up architecture. In this

architecture, the input is classified into one of n object categories, and following classi-

fication, task selection chooses the appropriate output unit to answer the present/absent

question associated with the task. In contrast, the top-down architecture in Fig. 2c switches

the processing that is performed on an input conditional on the task. In this Figure, the n
hidden layers are a shorthand for the n task-specific analyses that could be performed on

the input. Essentially Fig. 2b and c differ in that the bottom-up architecture utilizes a

hidden representation—specifically the weights from the input to the hidden layer—that is

task independent, whereas the top-down architecture utilizes a different hidden represen-

tation for each task, allowing for an extreme sort of task dependence.

The bottom-up and top-down architectures are endpoints of a continuum that represents

the strength of top-down modulation. In this work, we explore the continuum by manip-

ulating the degree to which hidden unit weights and activities can be modulated by task.

No modulation leads to task-independent weights and a bottom-up architecture; arbitrary

modulation leads to task-dependent weights and a strong top-down architecture.

We use a to denote the parameter that controls the strength of task modulation, where

a = 0 and a = 1 correspond to the bottom-up and top-down architectures, respectively, and

a plays the following role. In the bottom-up case, we have a single set of input-to-hidden

weights, denoted �w . In the top-down case, we have a distinct set of weights for each task t,
denoted ŵt . Interpolating between these two cases obtains actual weights used for task

t;wt , defined as:
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Fig. 2 (a) a generic single-task neural network architecture; (b) a bottom-up multitask architecture; (c) a
top-down multitask architecture
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wt ¼ ð1� aÞ�wþ aŵt; ð1Þ

where �w ¼
P

u ŵu=n and n is the number of distinct tasks.

Just as the connectivity of the model is not intended to have any neurobiological reality,

neither is a. We are simply designing a model that has the necessary functional charac-

teristics: a allows us to manipulate the degree of top-down modulation. Using an ANN

model for this exploration allows us to manipulate properties of the model—namely,

activation and weights—that at least have a rough correspondence to actual neural hard-

ware.

1.3 Research questions

Having proposed a simplistic but concrete architecture to examine the role of top-down

modulation of information processing, we turn to questions we hope to answer with this

line of research. In general, the questions concern the benefit of top-down modulation.

Although the neuroscientific and psychological data mentioned earlier provide clear

evidence of top-down modulation, cognitive neuroscience has little computational

understanding of the magnitude of the benefit, the conditions under which a benefit is

obtained, and what types of top-down modulations yield benefits. Consider the following

issues.

1. Suppose the bottom-up architecture (Fig. 2b) is given the same number of free

parameters (weights) as each of the task-specific subnets of the top-down architecture

(Fig. 2c). This situation corresponds to the case in which top-down modulation has the

ability to arbitrarily rewire the network connectivity. Because the top-down

architecture benefits from an n-fold expansion in representational and computing

power, one would be surprised if it did not win out.

2. Suppose the top-down and bottom-up architectures are matched on total number of

free parameters (weights). By matching, we mean that a top-down architecture with h
hidden units is compared to a bottom-up architecture with roughly nh hidden units.

Two early ANN studies offer conflicting predictions in this situation. Caruana (1997)

studied multitask learning in neural nets and found a benefit for sharing of hidden

representations among tasks, as would occur with the bottom-up architecture. Rueckl

et al. (1989) found that partitioning hidden units to handle specific tasks helped

performance. The difference between these two studies was the amount of similarity

among tasks. Caruana studied similar tasks, whereas Rueckl et al. studied tasks that

appeared to have little overlap with one another.

3. What strength of top-down modulation is necessary to obtain a benefit over the pure

bottom-up architecture? That is, for what value of a do we find a benefit? Because the

neurobiological evidence suggests a limited modulation due to top-down influences,

one would have to question whether top-down modulation played the role suggested

by our framework if a benefit is obtained only for a values close to 1. In contract, if an

intermediate strength of top-down modulation (i.e., 0 < a < 1) outperforms the a = 0

and a = 1 cases, it would provide a computational rationale for the sort of weak top-

down modulation observed in the brain.

4. How does the strength of top-down modulation (a) interact with: (a) the amount of

processing resources (hidden units) available, (b) the noise level in the input, and (c)

the amount of training data. All three of these variables influence the difficulty of
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performing each task, and in these performance-limited cases, the benefit of top-down

modulation may be more apparent. Such a finding would be consistent with the

neuroscientific finding that attentional modulations are larger when displays are

cluttered or noisy (e.g., Maunsell 2004).

2 Methodology

We studied four data sets, summarized in Table 1. Sets A, C, and D are from the UCI

Machine Learning Repository (pendigits , letter� recognition , and isolet ,

respectively), and Set B is derived from the MNIST database and available at yann.le-

cun.com/exdb/mnist/index.html. Sets A-C are visual images, utilizing three different fea-

ture representations: stroke based, pixel based, and statistical moments and edge counts.

Set D uses the 26 spoken letters of the alphabet. Because our modeling is at an abstract

level, it did not seem unreasonable to include a non-visual data set. Our primary goal in

picking data sets was to find a diverse collection using different representations.

For any a, the training procedure involved a search in the model’s underlying parameter

space, fŵtg . These parameters are translated into weights used in the activation dynamics,

fwtg , via Eq. 1. The logic of this procedure is to obtain weights whose strength of task-

specific modulation is related to a. The training procedure and the fŵtg are not meant to

have any neurobiological reality; they simply provide a means of obtaining sets of weights

with given functional properties.

Training was performed via on-line steepest descent in the underlying parameter space,

fŵtg , using a mean-squared-error objective function. For each training example on each

epoch, gradients were computed with respect to each task’s underlying parameters, and

weights were updated. An adaptive learning rate was used, which increased by a small

constant if the error dropped from one epoch to the next, and decreased by a constant of

proportionality if the error rose. To ensure that the network was trained to a local mini-

mum, we used a conservative criterion that terminated training only when the epochwise

mean squared-error dropped by less than 1% over 100 epochs. For each value of a, each

hidden-layer size, and each train/test split, we performed 3-8 replications of training with

different random weight initializations. (The number of replications was inversely related

to the number of data splits, ensuring a roughly fixed number of total runs.)

For each training run, an ROC curve was computed for the test/validation set, and the

area under the ROC curve (AROC) was determined. AROC is a measure of a model’s

Table 1 Data sets used in simulations

Label Description Source Input
dim

#
Tasks

#
Examples

Evaluation #
Hid

A Pen-Based Handwritten
Digits

UCI 256 10 10992 70% train/30% test 2

B Pixel-Based Handwritten
Digits

MNIST 196 10 5000 5-fold cross
validation

2

C Distorted-Font Letters UCI 16 26 20000 3-fold cross
validation

15

D ISOLET Spoken Letters UCI 617 26 7797 80% train/20% test 4

50 M.C. Mozer, A. Fan

123



intrinsic ability to perform a two-way discrimination—present versus absent in the case of

our tasks. The AROC measure ranges from 0.5, indicating chance discrimination, to 1.0,

indicating perfect discrimination. An AROC score is obtained for each task, and we

compute the mean AROC score across tasks.

3 Results and Discussion

Figure 3 shows results for data sets A–D, with one row per data set. The first column of the

Figure plots AROC discrimination performance as a function of the size of the hidden

layer, both for the pure bottom-up net (a = 0, dashed line) and the strong top-down net (a =

1, solid line). The error bars indicate ±1 standard error of the mean. Performance improves

as the network size increases, at least for the range of network sizes we studied. The x-axis

of the graph indicates both the hidden layer size of the bottom-up net, and the hidden layer
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Fig. 3 AROC performance on data sets A–D. The graphs are explained in detail in the text.
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size for each task in the top-down net. Thus, comparing the bottom-up and top-down

AROC values for a given value on the x-axis allows a factor of n more free parameters for

the top-down net. This assumption is sensible if top-down modulation can completely

rewire the available hidden units for each task. At this extreme, it’s not surprising that the

top-down net outperforms the bottom-up net.

At the other extreme, when no rewiring can take place, then the natural comparison is

betwen nets matched on total hardware: a top-down net with h units per task versus a

bottom-up net with nh units. As examination of the first column of Figure 3 reveals, little or

no advantage is obtained for the top-down net in this case. Thus, the benefit of task-specific

modulation of unit responses arises in conditions where hardware resources are limited and

can be effectively reused by top-down modulation. For this reason, all subsequent

explorations were performed by selecting a particular hidden layer size for each data set,

such that resource constraints arose. The size of the hidden layer for each data set is shown

in Table 1.

The second column of Fig. 3 plots the AROC as a function of training a. Individual

runs—each with a different weight initialization and/or train/test split—are marked with

an ‘‘x’’. The data points are fit with a fourth or fifth order polynomial to give a sense of

the relationship. As the strength of top-down modulation of the weights (a) increases, so

does performance. Interestingly, in three of the four data sets, an intermediate strength of

top-down modulation; e.g., a = 0.5 yields reliably better performance than independence

of the weights across tasks, a = 1 (A: t(14) = 4.15, p < 0.001; B: t(14) = 1.35, p > .10; C:

t(14) = 4.62, p < 0.001; D: t(14) = 4.066, p < 0.002). And importantly, even weak

top-down modulation obtains performance improvements. We interpret these results as

strong support for the computational benefits of task-dependent modulation of unit

responses.

We have treated a as if it controls the degree to which hidden weights and responses are

allowed to vary from one task to the next. However, a is primarily a parameter of training,

because for a > 0, any arbitrary set of weights, fwtg , can be obtained via Eq. 1 and

appropriate selection of fŵtg . Thus, it is necessary to assess the strength of task modu-

lation in other ways.

One measure of task-specific modulation is how much individual hidden-unit weights

vary from one task to another. For some hidden unit i having weights wti for task t, the

variance is Et½jwti � Et0 ½wt0i�j2� . We compute the expected variance over weights, and

normalize this quantity with respect to the variance within a task, across hidden units:

Vw ¼ Ei;t½jwti � Et0 ½wt0i�j2�=Ei;t½jwti � Ei0 ½wt0i0 �j2�: ð2Þ

When Vw = 0, we have a pure bottom-up net which yields no variance in the weights

across tasks. When Vw = 1, a particular weight varies as much from one task to the next as

the weights for a particular task vary from one connection to another. The third column of

Fig. 3 plots the AROC value of each run as a function of its corresponding Vw value. For

data sets A, B, and C, the best AROC value is obtained for Vw in the neighborhood of 0.5,

0.33, and 0.5, respectively. Thus, to achieve optimal performance, top-down modulation

must vary the weights from task to task, but the amount of adjustment is far less than the

variation one observes over different units.

A second measure of task-specific modulation is analogous to the first, but uses relative

activation variance instead of weight variance. The measure Va, depicted in the fourth

column of Fig. 3, is the expected variance in the activity of a particular hidden unit across

tasks, relative to the expected variance in a particular tasks across all hidden units. When
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Va = 0, we have a pure bottom-up net which yields no variance in the hidden activations

across tasks. When Va = 1, a particular hidden unit’s activity varies as much across tasks as

activity varies for a particular task across units. Similar to the Vw graphs, we find that a a

relatively small task-dependent modulation yields significant improvements in AROC; Va

values in the neighborhood of 0.5 yield optimal performance.

The a, Vw, and Va graphs all point to the same conclusion: any degree of top-down

modulation of responses yields significant increases in the discriminative ability of the

ANN. Although this conclusion is hardly startling, what is surprising and interesting is (a)

the slope of the curves, i.e., how sharply performance improves with even small modu-

lations, and (b) the magnitude of improvement that can be obtained by top-down modu-

lation. The slopes on data set D are somewhat shallower than on the other three data sets.

This slope cannot be attributed to the number of tasks, because both C and D involve 26

tasks. It might be attributed to the high input dimensionality of set D, which allows any

degree of task modulation to affect a large number of weights, consistent with the finding

that Set D’s Vw curve is shallower than its Va curve.

We performed additional simulations exploring constrained top-down influences of

hidden unit activity that affected only the gain or bias of a unit. That is, the net input to

hidden unit j is defined as netj = gt (
P

i wji xi) + bt, where x is the input vector, bt is a task-

specific bias, and gt is a task-specific gain. We allowed either bt or gt to vary with task

during training, providing additive or multiplicative contributions to the otherwise task-

independent net input to a hidden unit. These constrained modulations correspond to a

subclass of responses observed in neural activity (e.g., Maunsell 2004).

We found modest benefits for top-down modulation of biases and gains. The largest

effect was in data set A, where AROC rose from 0.76 to 0.83 (t(28) = 1.99, p < 0.05).

Effects of bias and gain modulation on data set B are shown in Fig. 4. The improvements

are small relative to what we observed by allowing task modulation of individual

Fig. 4 AROC performance on task B for different types of constrained top-down modulation. Modulation
of biases, gains, or biases + gains led to only moderate improvements in performance. Error bars show one
standard error of the mean
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connections. In biological neurons, bias and gain changes are observed in the context of

priming phenomena and attentional phenomena, respectively. We speculate that the reason

our simulations showed little benefit of these modulations is because our tasks did not

involve sequential effects—in which case priming is useful—or multiple-object displays—

in which case attentional selection is useful.

In a final set of simulations, we explored the interaction between top-down modulation

and input noise. During training and testing, we added Gaussian noise to each input unit i
with mean zero, and standard deviation k ri, where k is a noise level, and ri is the standard

deviation of the input activity in the training set. Figure 5 shows the outcome for k [ 0,

0.25, 0.5, 1 and data sets A and B. Noise had little impact on a = 0, most likely because the

weights were constrained by all tasks in parallel, and the fewer degrees of freedom led to

less overfitting of the training data. Nonetheless, the benefits of top-down modulation over

a pure bottom-up model net are obtained for most levels of noise. Even in data set A, where

noise had a big impact, top-down modulation leads to a sort of noise robustness: its AROC

value for k = 0 and a = 0 is comparable to that for k = 0.5 and a = 0.2.

4 Conclusions and Future Work

Our simulations show a clear benefit of top-down task-based modulation of neural

responses. Although the architectures we studied had little of the structure of the human

visual system, and the ANN is a highly idealized neural network, we are confident that the

results apply to neurobiological systems. If anything, our results are probably conservative

because the visual system is a multilayered hierarchy, and each layer introduces nonlin-

earities. As a result, small modulations to the response of neurons in an early layer can

amplify as they propagate forward.

Top-down modulation increases the effective resources of a neural architecture, and is

therefore most useful to overcome resource limitations. However, our simulations showed

that top-down modulation may also be useful in overcoming some amount of input noise.

We observed that a moderate top-down modulation (e.g., a = 0.5) yielded better perfor-

mance than a pure bottom-up (a = 0) or a strong top-down model (a = 1). In a sense this

result should not be terribly surprising. The bottom-up model is ideal if the tasks share

strong similarities, and therefore internal representations of the input should be identical.

The strong top-down model is ideal if the tasks are unrelated, allowing for flexible rep-

resentations from task to task. Clearly, the tasks we studied have an intermediate degree of

similarity, and therefore benefited from an intermediate strength of top-down modulation.

Fig. 5 Performance on data sets A and B as a function of a for various noise levels
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A surprising and interesting finding of our simulations is that even small task-based

modulations yield significant performance improvements, as evidenced by the steep slopes

of our AROC curves for the a, Vw, and Va graphs. Because similar tasks should utilize

similar representations, it makes sense that not much modulation is required to achieve a

performance boost. Our simulations provide a computational justification for observed

task-dependent modulation of neural activity, and suggest that experimental studies should

be even more sensitive to such modulations.

Our simulations are limited by the number of data sets we explored. We also did not

have the opportunity to explore another possible benefit of top-down modulation: the

ability to generalize to novel tasks (Caruana 1997). For example, suppose one was asked to

search for a target defined by a combination of color and shape. Previous experience with

searching for the color and/or the shape may facilitate search for the novel combination via

task-based modulation. Regardless of how such an exploration might turn out, we have

demonstrated how task-based modulation can increase the effective processing and rep-

resentational capacity of a hardware limited system like the brain.
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